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Local reactivity limited aggregation
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The diffusion limited cluster-cluster aggregatiédbLCA) model in a box is modified by introducing a
reactivity probability of monomers given bw’i~3, wherev; is the coordination number of a giveith
monomer. Fow=1 the DLCA model is recovered, but for>1 we show by two-dimensional calculations
that resulting structures exhibit three correlation domains as in base-catalyzed silica gels: compact, fractal, and
homogeneous, at very small, intermediate, and large scales, respectively. Our findings are supported by nu-
merical calculations of the scattering functigfq). [S1063-651X%96)00210-3

PACS numbeps): 61.43.Bn, 61.43.Hv, 82.70.Gg

In the last years numerical models have been introducegarticle-cluster aggregation rather than cluster-cliisiren
to simulate the aggregation of clusters and have proven to biéthe Eden mode[15] describes satisfactorily the nucleation
ideal tools to study the aggregation of colloidal systemsphenomenon in the limit opH>12, this model is not ad-
[1-3]. In experiments, the aggregation mechanism usuallgquate to describe the gelation process of base-catalyzed
depends on the chemical conditions. For example, when thgilica for 8<pH<12. Experimentally, as demonstrated in a
surface charges of the particles are fully screefied when  previous publicatior] 16], base-catalyzed silica gels exhibit
the system is in neutral conditionsH~ 7) it is stated that Ccompact structures at very small scales and the two correla-
the aggregation process is only diffusion limitg4]. Nu-  tion domains observed for DLCA aggregatésctal and ho-
merically, this phenomenon has been accounted for by g10geneousat intermediate and large scales, respectively.
diffusion-limited cluster-cluster aggregatiqidLCA) algo-  Therefore, one can deduce that the very small scales are
rithm introduced several years agb,6]. This model has described by the Eden model and the larger scales by the
been widely applied to explain formation of quite rigid col- DLCA model. To our knowledge, a model able to reproduce
loidal structures like aggregates of gold partidld§ colloi-  the entire distance correlation features of a base-catalyzed
dal silica gelq 7], etc. Recently, for the chemical conditions Silica gel has not yet been proposed. In fact, the appropriate
described above, it has been argy&] that for tenuous humerical description of its growth process should consider
systems(i.e., when aggregation occurs in very small or ill- the two experimental chemical reactions: hydrolysis and con-
defined particle systemslocal restructurations need to be densation.
considered in order to explain the more compact structures In 1992, Kallala, Jullien, and Cabarj&7] introduced a
obtained. With this purpose, another numerical model, théumerical mode(KJC mode] to describe “gelation”(when
so-called fluctuating bond aggregation mof#], has been reaction yields fractal structureand “precipitation” (when
proposed as an extension of the DLCA model including clusreaction yields dense structuyess the two possible results
ters deformations by means of bond fluctuations. of the polymerization of monomers dissolved in a solvent.

In base-catalyzed conditior(ge., pH>7), particles ex- The activation of bondéhydrolysis reactionwas considered
periment short range interactions, therefore the aggregatiopy defining a reactivity probability for each monomer given
is limited by the reactivity of the particles. To describe thisby
situation numerically, a sticking probability between clusters
(i.e., a probability to overcome a given potential bajrieas pi=—r-o, (1)
been introduced in the DLCA algorithm: this is the so-called 2w
chemically (reaction limited cluster-cluster aggregation wherew is a reactivity parameter which describes the pattern
CLCA (RLCA) model[10,11]. Resulting structures are more of chemical selection, and; the number of bonds already
compact than in the DLCA case, in agreement with experiformed. They obtained an increasing fractal dimension of
ments on quite rigid colloidal systems where surface chargesggregates with increasimg reaching up the spatial dimen-
are partially screened 2]. However, Keefef13] argues that sion (in their cased=3) for w=2. Note that the main idea
when aggregation takes places between noncondensed paf-this model is thatv could be related to thpH. However,
ticles (like tenuous systemsthe reaction rate of hydrolysis the hierarchical procedure that they considered allows us to
should not be neglected as in the standard RLCA modektudy only the diluted cas@vhen the concentratioa tends
Another relevant point is that for such chemical conditions,to 0). An additional inconvenience of their model was that it
the solubility increases drastically with increasipl [14], neglected kinetic aspects, thereby loosing the usual experi-
and forpH>12 the system becomes very close to equilib-mental competition between condensation and hydrolysis
rium. Hence, the minimum surface is obtained by a nucletates. In their approach, only aggregates exhibiting the same
ation phenomenoifi.e., formation of the clusters is due to correlations at all scales can be formed.
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FIG. 1. Typical aggregates fdr=150,w=1,2,4, and concentratiorts=0.05 (a), andc=0.25 (b).

In this paper we perform the KJC model in a box for ing probabilityp is related to the reactivity probability; of
w>1 and a concentration larger than the gel concentratiog monomei, which we define here as follows:
Cq4 (i.e. such that a gelling network spanning the box from
edge to edge in the two space directions is obtained at the Wi
end of the aggregation procgsd show that the resulting Pr= 281 (4)
system exhibits three correlations domains as in base-
catalyzed silica gels.

Our two-dimensional simulations have been performed irHere we choose a normalization factor fgrwith an expo-
a square box of edge length For a concentration of mono- nent 21—1, since this corresponds to the maximum number
mers of bonds for a monomer able to stick to another. Therefore,

the sticking probability between two monomers is given by

)

i
N Z

p:priprj- 5

N monomers are initially randomly distributed on the lattice Typical examples of aggregates for two different concen-
(overlaps are avoidedTaking into account that the diffusion ations and differentv values are presented in Fig. 1. In
coefficient of a system varies as the inverse qf its radius, figs. 1a) (c=0.05< cg) and 4b) (c=0.25>c,) we observe
monomer(or a cluster containingy; monomers is chosen  that forw=1 the system exhibits only fractal, and fractal and
randomly with & probability: homogeneous correlations, respectively, as in DLCA aggre-
gates[16]. However, forw=2 andw=4 a compact regime
3) appears at small scales, with a larger average size for
w=4. Therefore, we can conclude that for=0.25 and
w>1 the aggregates exhibit three correlations domains lim-
where (= —1/D) is the kinetic exponent an®=1.45 is ited by two characteristic size lengths. The first one relates to
the fractal dimension of DLCA aggregates in two dimen-the average sizg, of the compact “particles,” and the sec-
sions. Then the monomer or cluster is moved by a unit stepnd one is the so-called fractal persistence lergtihich
[taking into account the periodic boundary conditioR8C)]  corresponds to the average size of fractal aggregates. For
in any of the four directions:- 1,1 chosen at random. If the distances larger tha# the system is homogeneous as in the
moving system does not try to occupy an already occupie@®LCA model[16].
site, the displacement is performed and the algorithm goes A quantitative analysis of the different correlation do-
on by choosing another monomer or cluster. In the oppositenains depicted in Fig. 1 can be performed by calculating the
case, the displacement is not performed but a bond betweestattering functiors(q) which corresponds to the scattering
two monomergone of each systems established if a gen- intensity of dimensionless points located at the monomers
erated random numbéuniformly distributed between 0 and centersM;. With a convenient normalizatioi®(q) is given
1) is smaller than a calculated sticking probability. The stick-by
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termediate linear regime, which is bonded by the Guinier
10 ' ' ' regime atqg~27/R [the gyration radiuR is the typical

upper cutoff of the spanned aggregate, wi(yg) =N] and
the damped oscillations regime@f~2w/a (a is the mono-
mer size. In Fig. 2, the curves in black and open symbols
corresponds t@=0.25, forw=1 andw=4, respectively.
The first curve exhibits the following two typical correlations
for c>cgy of DLCA aggregates

s 2 27

S(g)=q for ?<q<?,
€)

b 2 2

S(g)=q for ?<q<?,

where D~1.5 (a value close to the fractal dimension of
DLCA aggregates in a two-dimensional spacehe second
curve exhibits an additional crossover in the interval
27l é<q<2m/a. Actually, forw=4 andc=0.25 one has

s 2 2
FIG. 2. Log-log plot ofS(q) vs q, for L=150,c=0.25,w=1 S(g)=q for E<q<?,
(black symbolg w=4 (open symbolgs and forc=0.05 andw=4
(dashed curve The arrow on the left indicates the crossovgr 2 2
between the homogeneous and the fractal regimes. The other arrow S(q)xq P for —<q<—, (10
indicates the crossovey, between the fractal and the compact ¢ To
regime. Each curve results from an average over three simulations. 2

1 2
S(q)e«q ~° for r—<q<?.
0

18 -1 R
=_ ig-rij2-_ ig-(ri=rj)
S(a) N |.21 e N.EJ: © . © On the other hand, we note in Fig. 2 that fe=4 and
¢c=0.05 theS(q) curve (dashed ling does not exhibit the
WhereFizcﬂ)\Ai. This last expression can be simplified sig- homogeneous regimeS(q)«q~?] at smallq since in this
nificantly by averaging over all possible three-dimensionalcasec<cy. We observe that in the other two regime
directions ofq largerq values, the curve is superimposed to tBéq) curve
with ¢=0.25 and samev=4. In fact, as also observed in
1. singr;; Fig. 1, it seems that the average sizgdoes not depend
S(a)= NZ qr : (78 significantly onc.
! N In Fig. 3 we show a log-log plot of5(q)q? vs q for
with ¢=0.25 andv=1 (solid curve, w=2 (dotted-dashed curye
andw=4 (dashed curye We use the convenieri(q)q?
ry=M;M;=| ri— F,-I. (7b) ~ representation in order to emphasize theependence of the
S(q) curves in the Zr/r y<g<2s/a compact regime. In this
Separating the contributions=j andi#j, one gets figure, the arrows indicate the position of the crossover wave
vectors @,~2w/ry). Note thatq, is shifted towards small
1o singr; g values wherw increasegfor w= 1, as the compact regime
S(q)=1+ Ngj arij (8) does not exist, one can assume thatq,). This result is
consistent with those observed in Fig. 1, since it corresponds
The fact that our aggregation model has been impleto an increasing average sizg with increasingw. Further-
mented in two dimensions, does not impede us to use the lastore, we observe that for increasing the slope in this
simplified expression, since it is known that in the typicalregime vanishes, because the dimension of the compact ob-
power law the scattering function follov&q)>q~°, D will jects at small length scales approaches the spatial dimension
take the value 2 if a structure domain is found to be homo2. In fact, for q,<q<g, and from the power laws(q)
geneous in a plane of the direct space. On the other hand, theq ° we foundD=1.7 forw=2 andD=1.9 for w=4.
expression(8) is only valid when the aggregates are not con-However from Fig. 1 it is clear that at small scales and for
tained in a boxi.e., when the system is a single aggregate w>1, the system is compact. If the vallle=2 is not ob-
so we have stored the monomer connectivities in order to b&ined, it may be due to the small numbrerof monomers
able to span the aggregates out of the box by taking intevhich form our “particles” (n~10 andn~20, for w=2
account the PBC considered in our algorithm. and w=4, respectively The situation should be different
Typical S(q) curves are reported in Fig. 2 far=150 and  when considering both andw larger but the computation
different concentrations ang values. We focus on the in- time would be prohibitive for our algorithm with the selected
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FIG. 3. Log-log plot ofS(q)g? vs q, for L=150,c=0.25, and
w=1 (solid curvg, w=2 (dotted-dashed cury@andw=4 (dashed
curve. The arrows indicate the crossovers positi@psand g, .
Each curve results from an average over three simulations.

set of parameters. In fact, using a RS/6000 IBM computer

for L=150,w=4 andc=0.25, about 48 hours of CPU is
needed for each configuration.

In our model, the aggregation of monomers is very slow

since, as deduced from E@), the reactivity probability of a
monomer decreases whewn increases. In fact, the growth

this stage, the growth process is governed by a diffusion
limited cluster-cluster aggregation mechanism of these con-
densed particles.

We would like to point out that the resulting three corre-
lation domains fow>1, are consistent with those reported
by Skjeltorp[18] in a two-dimensional aggregation experi-
ment of polystyrene spheres with surface charges partially
screened by added salt. The resemblance between our aggre-
gate forw=4 and the polystyrene aggregate of the Skjel-
torp’s experiment is remarkablgompare Fig. (b), w=4,
with Fig. 3 of Ref.[18]). Skjeltorp argues that the compact
structures at small length scales obtained in his experiments
are due to some rearrangement of the spheres migrating from
the first nearest-neighbor site reached to an energetically
more favorable neighbor site. In our model, this situation
corresponds to a monomer with a highconnectivity value.
Furthermore, we have shown that our model is able to simu-
late the formation of particles and fractal clusters as formed
in base-catalyzed silica gdl$6]. Unfortunately, quantitative
comparison between our model and this experimental system
requires three-dimensional calculations, which by now are
hard to consider for the reasons mentioned above. On the
other hand, the model as presented here leads also to DLCA
aggregates fow<1, since in this cas@,=1. However, if
we eliminate the normalization factor ¢#), for w<1 the
sticking probability between single monomers becomes
equal to one, and is smaller for monomers sticking to already
connected monomers. In other words, at the early stages the
aggregation process favors very tenuous structures. Prelimi-
hary calculations show that at small length scales the struc-
tures are less compact than for typical DLCA aggregates, but
with similar fractal correlations, as reported by Meakin and

‘Muthukumar[19] in a study using a reaction-limited aggre-

gation hierarchical model with repulsive interactions.

process speeds up only when there are no remaining single One of us(A. H.) would like to acknowledge support

monomers, i.e., when all of them are stick-in-particles
compact set ofn monomery or fractal clusters. When a
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