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The diffusion limited cluster-cluster aggregation~DLCA! model in a box is modified by introducing a
reactivity probability of monomers given bywv i23, where v i is the coordination number of a giveni th
monomer. Forw51 the DLCA model is recovered, but forw.1 we show by two-dimensional calculations
that resulting structures exhibit three correlation domains as in base-catalyzed silica gels: compact, fractal, and
homogeneous, at very small, intermediate, and large scales, respectively. Our findings are supported by nu-
merical calculations of the scattering functionS(q). @S1063-651X~96!00210-3#

PACS number~s!: 61.43.Bn, 61.43.Hv, 82.70.Gg

In the last years numerical models have been introduced
to simulate the aggregation of clusters and have proven to be
ideal tools to study the aggregation of colloidal systems
@1–3#. In experiments, the aggregation mechanism usually
depends on the chemical conditions. For example, when the
surface charges of the particles are fully screened~i.e., when
the system is in neutral conditions,pH' 7! it is stated that
the aggregation process is only diffusion limited@4#. Nu-
merically, this phenomenon has been accounted for by a
diffusion-limited cluster-cluster aggregation~DLCA! algo-
rithm introduced several years ago@5,6#. This model has
been widely applied to explain formation of quite rigid col-
loidal structures like aggregates of gold particles@4#, colloi-
dal silica gels@7#, etc. Recently, for the chemical conditions
described above, it has been argued@8,9# that for tenuous
systems~i.e., when aggregation occurs in very small or ill-
defined particle systems!, local restructurations need to be
considered in order to explain the more compact structures
obtained. With this purpose, another numerical model, the
so-called fluctuating bond aggregation model@8#, has been
proposed as an extension of the DLCA model including clus-
ters deformations by means of bond fluctuations.

In base-catalyzed conditions~i.e., pH.7), particles ex-
periment short range interactions, therefore the aggregation
is limited by the reactivity of the particles. To describe this
situation numerically, a sticking probability between clusters
~i.e., a probability to overcome a given potential barrier! has
been introduced in the DLCA algorithm: this is the so-called
chemically ~reaction! limited cluster-cluster aggregation
CLCA ~RLCA! model@10,11#. Resulting structures are more
compact than in the DLCA case, in agreement with experi-
ments on quite rigid colloidal systems where surface charges
are partially screened@12#. However, Keefer@13# argues that
when aggregation takes places between noncondensed par-
ticles ~like tenuous systems!, the reaction rate of hydrolysis
should not be neglected as in the standard RLCA model.
Another relevant point is that for such chemical conditions,
the solubility increases drastically with increasingpH @14#,
and for pH.12 the system becomes very close to equilib-
rium. Hence, the minimum surface is obtained by a nucle-
ation phenomenon~i.e., formation of the clusters is due to

particle-cluster aggregation rather than cluster-cluster!. Even
if the Eden model@15# describes satisfactorily the nucleation
phenomenon in the limit ofpH.12, this model is not ad-
equate to describe the gelation process of base-catalyzed
silica for 8,pH,12. Experimentally, as demonstrated in a
previous publication@16#, base-catalyzed silica gels exhibit
compact structures at very small scales and the two correla-
tion domains observed for DLCA aggregates~fractal and ho-
mogeneous! at intermediate and large scales, respectively.
Therefore, one can deduce that the very small scales are
described by the Eden model and the larger scales by the
DLCA model. To our knowledge, a model able to reproduce
the entire distance correlation features of a base-catalyzed
silica gel has not yet been proposed. In fact, the appropriate
numerical description of its growth process should consider
the two experimental chemical reactions: hydrolysis and con-
densation.

In 1992, Kallala, Jullien, and Cabane@17# introduced a
numerical model~KJC model! to describe ‘‘gelation’’~when
reaction yields fractal structures! and ‘‘precipitation’’ ~when
reaction yields dense structures! as the two possible results
of the polymerization of monomers dissolved in a solvent.
The activation of bonds~hydrolysis reaction! was considered
by defining a reactivity probability for each monomer given
by

pi5
wv i

( jw
v j
, ~1!

wherew is a reactivity parameter which describes the pattern
of chemical selection, andv i the number of bonds already
formed. They obtained an increasing fractal dimension of
aggregates with increasingw reaching up the spatial dimen-
sion ~in their cased53) for w52. Note that the main idea
of this model is thatw could be related to thepH. However,
the hierarchical procedure that they considered allows us to
study only the diluted case~when the concentrationc tends
to 0!. An additional inconvenience of their model was that it
neglected kinetic aspects, thereby loosing the usual experi-
mental competition between condensation and hydrolysis
rates. In their approach, only aggregates exhibiting the same
correlations at all scales can be formed.
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In this paper we perform the KJC model in a box for
w.1 and a concentration larger than the gel concentration
cg ~i.e. such that a gelling network spanning the box from
edge to edge in the two space directions is obtained at the
end of the aggregation process! and show that the resulting
system exhibits three correlations domains as in base-
catalyzed silica gels.

Our two-dimensional simulations have been performed in
a square box of edge lengthL. For a concentration of mono-
mers

c5
N

L2
, ~2!

N monomers are initially randomly distributed on the lattice
~overlaps are avoided!. Taking into account that the diffusion
coefficient of a system varies as the inverse of its radius, a
monomer~or a cluster containingni monomers! is chosen
randomly with a probability:

pni5
ni

a

( jnj
a ~3!

wherea(521/D) is the kinetic exponent andD51.45 is
the fractal dimension of DLCA aggregates in two dimen-
sions. Then the monomer or cluster is moved by a unit step
@taking into account the periodic boundary conditions~PBC!#
in any of the four directions61,61 chosen at random. If the
moving system does not try to occupy an already occupied
site, the displacement is performed and the algorithm goes
on by choosing another monomer or cluster. In the opposite
case, the displacement is not performed but a bond between
two monomers~one of each system! is established if a gen-
erated random number~uniformly distributed between 0 and
1! is smaller than a calculated sticking probability. The stick-

ing probabilityp is related to the reactivity probabilitypr i of

a monomeri , which we define here as follows:

pr i5
wv i

w2d21 . ~4!

Here we choose a normalization factor forpr with an expo-
nent 2d21, since this corresponds to the maximum number
of bonds for a monomer able to stick to another. Therefore,
the sticking probability between two monomers is given by

p5pr ipr j . ~5!

Typical examples of aggregates for two different concen-
trations and differentw values are presented in Fig. 1. In
Figs. 1~a! (c50.05,cg) and 1~b! (c50.25.cg) we observe
that forw51 the system exhibits only fractal, and fractal and
homogeneous correlations, respectively, as in DLCA aggre-
gates@16#. However, forw52 andw54 a compact regime
appears at small scales, with a larger average size for
w54. Therefore, we can conclude that forc50.25 and
w.1 the aggregates exhibit three correlations domains lim-
ited by two characteristic size lengths. The first one relates to
the average sizer 0 of the compact ‘‘particles,’’ and the sec-
ond one is the so-called fractal persistence lengthj which
corresponds to the average size of fractal aggregates. For
distances larger thanj the system is homogeneous as in the
DLCA model @16#.

A quantitative analysis of the different correlation do-
mains depicted in Fig. 1 can be performed by calculating the
scattering functionS(q) which corresponds to the scattering
intensity of dimensionless points located at the monomers
centersMi . With a convenient normalization,S(q) is given
by

FIG. 1. Typical aggregates forL5150,w51,2,4, and concentrationsc50.05 ~a!, andc50.25 ~b!.
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whererW i5OMW i . This last expression can be simplified sig-
nificantly by averaging over all possible three-dimensional
directions ofqW

S~q!5
1

N(
i , j

sinqri j
qr i j

~7a!

with

r i j5MiM j5urW i2rW j u. ~7b!

Separating the contributionsi5 j and iÞ j , one gets

S~q!511
1

N(
iÞ j

sinqri j
qr i j

, ~8!

The fact that our aggregation model has been imple-
mented in two dimensions, does not impede us to use the last
simplified expression, since it is known that in the typical
power law the scattering function followsS(q)}q2D, D will
take the value 2 if a structure domain is found to be homo-
geneous in a plane of the direct space. On the other hand, the
expression~8! is only valid when the aggregates are not con-
tained in a box~i.e., when the system is a single aggregate!,
so we have stored the monomer connectivities in order to be
able to span the aggregates out of the box by taking into
account the PBC considered in our algorithm.

TypicalS(q) curves are reported in Fig. 2 forL5150 and
different concentrations andw values. We focus on the in-

termediate linear regime, which is bonded by the Guinier
regime atqR'2p/R @the gyration radiusR is the typical
upper cutoff of the spanned aggregate, withS(qR)5N# and
the damped oscillations regime atqa'2p/a (a is the mono-
mer size!. In Fig. 2, the curves in black and open symbols
corresponds toc50.25, for w51 andw54, respectively.
The first curve exhibits the following two typical correlations
for c.cg of DLCA aggregates

S~q!}q22 for
2p
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~9!
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a
,

where D'1.5 ~a value close to the fractal dimension of
DLCA aggregates in a two-dimensional space!. The second
curve exhibits an additional crossover in the interval
2p/j,q,2p/a. Actually, for w54 andc50.25 one has
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On the other hand, we note in Fig. 2 that forw54 and
c50.05 theS(q) curve ~dashed line! does not exhibit the
homogeneous regime@S(q)}q22# at smallq since in this
casec,cg . We observe that in the other two regimes~at
largerq values!, the curve is superimposed to theS(q) curve
with c50.25 and samew54. In fact, as also observed in
Fig. 1, it seems that the average sizer 0 does not depend
significantly onc.

In Fig. 3 we show a log-log plot ofS(q)q2 vs q for
c50.25 andw51 ~solid curve!, w52 ~dotted-dashed curve!
and w54 ~dashed curve!. We use the convenientS(q)q2

representation in order to emphasize thew dependence of the
S(q) curves in the 2p/r 0,q,2p/a compact regime. In this
figure, the arrows indicate the position of the crossover wave
vectors (qr'2p/r 0). Note thatqr is shifted towards small
q values whenw increases~for w51, as the compact regime
does not exist, one can assume thatqr5qa). This result is
consistent with those observed in Fig. 1, since it corresponds
to an increasing average sizer 0 with increasingw. Further-
more, we observe that for increasingw the slope in this
regime vanishes, because the dimension of the compact ob-
jects at small length scales approaches the spatial dimension
2. In fact, for qr,q,qa and from the power lawS(q)
}q2D we foundD51.7 for w52 andD51.9 for w54.
However from Fig. 1 it is clear that at small scales and for
w.1, the system is compact. If the valueD52 is not ob-
tained, it may be due to the small numbern of monomers
which form our ‘‘particles’’ (n'10 andn'20, for w52
and w54, respectively!. The situation should be different
when considering bothL andw larger but the computation
time would be prohibitive for our algorithm with the selected

FIG. 2. Log-log plot ofS(q) vs q, for L5150, c50.25,w51
~black symbols!, w54 ~open symbols!, and forc50.05 andw54
~dashed curve!. The arrow on the left indicates the crossoverqj

between the homogeneous and the fractal regimes. The other arrow
indicates the crossoverqr0 between the fractal and the compact
regime. Each curve results from an average over three simulations.
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set of parameters. In fact, using a RS/6000 IBM computer,
for L5150, w54 andc50.25, about 48 hours of CPU is
needed for each configuration.

In our model, the aggregation of monomers is very slow,
since, as deduced from Eq.~4!, the reactivity probability of a
monomer decreases whenw increases. In fact, the growth
process speeds up only when there are no remaining single
monomers, i.e., when all of them are stick-in-particles~a
compact set ofn monomers! or fractal clusters. When a
monomer belongs to a particle or a cluster, it is multicon-
nected so the sticking probabilitypr becomes close to 1. At

this stage, the growth process is governed by a diffusion
limited cluster-cluster aggregation mechanism of these con-
densed particles.

We would like to point out that the resulting three corre-
lation domains forw.1, are consistent with those reported
by Skjeltorp @18# in a two-dimensional aggregation experi-
ment of polystyrene spheres with surface charges partially
screened by added salt. The resemblance between our aggre-
gate forw54 and the polystyrene aggregate of the Skjel-
torp’s experiment is remarkable„compare Fig. 1~b!, w54,
with Fig. 3 of Ref.@18#…. Skjeltorp argues that the compact
structures at small length scales obtained in his experiments
are due to some rearrangement of the spheres migrating from
the first nearest-neighbor site reached to an energetically
more favorable neighbor site. In our model, this situation
corresponds to a monomer with a highv i connectivity value.
Furthermore, we have shown that our model is able to simu-
late the formation of particles and fractal clusters as formed
in base-catalyzed silica gels@16#. Unfortunately, quantitative
comparison between our model and this experimental system
requires three-dimensional calculations, which by now are
hard to consider for the reasons mentioned above. On the
other hand, the model as presented here leads also to DLCA
aggregates forw,1, since in this casepr>1. However, if
we eliminate the normalization factor of~4!, for w,1 the
sticking probability between single monomers becomes
equal to one, and is smaller for monomers sticking to already
connected monomers. In other words, at the early stages the
aggregation process favors very tenuous structures. Prelimi-
nary calculations show that at small length scales the struc-
tures are less compact than for typical DLCA aggregates, but
with similar fractal correlations, as reported by Meakin and
Muthukumar@19# in a study using a reaction-limited aggre-
gation hierarchical model with repulsive interactions.

One of us~A. H.! would like to acknowledge support
from CONICIT ~Venezuela!. The numerical calculations
were done on the computers of the CNUSC~Centre Univer-
sitaire Sud de Calcul!, Montpellier, France, with support
from CNRS.
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FIG. 3. Log-log plot ofS(q)q2 vs q, for L5150,c50.25, and
w51 ~solid curve!, w52 ~dotted-dashed curve! andw54 ~dashed
curve!. The arrows indicate the crossovers positionsqr and qa .
Each curve results from an average over three simulations.
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